心衰竭及冠心症照護團隊 個別必修課程: 護理師/導管室技術師/體循師

高雄長庚 冠狀動脈照護團隊

初訂 2019.02.01

Rate

Normal : 60 ~ 100 bpm Bradicardia : < 60 bpm Tachycardia : > 100 bpm EKG Monitor : 15X Complete EKG : 6X Small box : 0.04 sec Large box : 0.2 sec

Rate

• 300 Rule:

TABLE 31-1 DETERMINING HEART RATE ON THE ECG

R-R Distance (# of baxes)		Heart Rate (bpm)
来 2 3 4 5 6		300 150 100 75 60 50
		50 43 37

Morphology

- Axis RAD, LAD
- P wave morphology RAE , LAE
- QRS complex morphology
 - LVH, RVH
 - LBBB, RBBB
 - LAFB, LPFB
 - Bifascular/Trifascular block
 - Ventricular pre-exicitation

- Definition : Spatial orientation of an electric vector
 - Normal : -30 ~ +90 LAD : -30 ~ -90 RAD : +90 ~ +180 EAD : -90 ~ -180

Axis - LAD

■ LAD : -30 ~ -90 Causes : Normal variant LVH, LAFB, LBBB Inferior wall MI, Ventricular preexcitation (posteroseptal accessory pathway) **Elevated diaphragm** (Obesity, pregnancy, ascites)

Axis - RAD

■ RAD : +90 ~ +180 Causes : Normal variant RVH, LPFB Cor pulmonale, COPD Anterolateral MI Ventricular preexcitation (free wall accessory pathway) Dextrocardia Childhood Limb lead reversal

 Indeterminate (Northwest) axis : -90 ~ +180
Causes : Normal variant COPD RVH

Anterosuperior axis

- Defines whether the apex of the heart faces the left arm (horizontal) or the left foot (vertical),
- Horizontal heart leads to a QRS complex in aVL that resembles that in leads V5 and V6
- Vertical heart leads to a QRS complex in lead aVF that resembles that in leads V5 and V6

Longitudinal Axis

- apex-to-base direction, which defines whether the left ventricle is anterior or posterior
- Clockwise rotation results in a more posterior position of the left ventricle, and the RV QRS complex (rS) is displaced to the left precordial leads.
- Counterclockwise rotation results in a more anterior shift of the left ventricle, and the LV QRS (qR) pattern is observed in the right precordial leads, mimicing RVH

Clockwise vs. Counter Clockwise

Atrial Depolarization

- RA: SA node —> inferior and anterior.
 Initial positive deflection of P wave in II & V1
- LA: High interatrial septum —> inferior and posterior.
 Terminal deflection of the P wave - positive in II negative in V1

Myoischemia – mechanism of injury current

Myoischemia - mechanism

Injury Current

Myoischemia - extent

Subendocardial injury vs Transmural injury

Myoischemia

8

ST-segment elevation in I, aV_L : High lateral infarct (usually due to LAD, after first septal branch) ST-segment elevation in II, III, aV_F . Inferior infarct (can be due to CIRC or RCA)

FIGURE 31-4

The ECG in coronary artery disease: anatomic relationship. A. Precordial leads: transverse view of the heart. B. Limb leads: "coronal" view of the heart.

Myoischemia - different pattern of ischemia

AMI

- When the resulting intracoronary thrombus is only partially occlusive, ST depressions or T-wave inversions or both develop, potentially resulting in a "non-Q" MI.
- When the thrombus is completely occlusive, ST elevations typically occur.

75% - deep Q waves

25% - no deep Q wave

but reduction of the R wave height or notching of the QRS complex

 Only half of pathologically "transmural" infarcts are associated with Q waves on the ECG

AMI

- There were no differences in the rates of recurrent ischemic events between Q and non-Q MI
- Differentiation between these two types of infarction is important when considering initial management.

=> ST segment elevation MI are candidates for reperfusion therapy (thrombolysis or catheter-based),

=> non-ST-segment elevation MI or unstable angina fare better with initial vigorous antiischemic, antithrombin, and antiplatelet therapies

Different EKG Patterns of Myoischemia

Prinzmetal Angina

TABLE 7-1. ACUTE TRANSMURAL MI. The characteristic ECG changes and their evolution.

Phase	Time	ST Segment	T Waves	R or Q Waves
Initial	First several hours	Elevated	Accentuated	Not yet
Early	First day	Elevated	Inverting	Q waves form
Mid	First days	Elevated or normalizing	Inverted	Q waves formed
Late	After first days	Elevated or normal	Variable	Q waves persist Loss of R waves persists

TABLE 7-2. ACUTE TRANSMURAL MI. The characteristic ECG changes and their location.

Territory	Artery Usually Responsible	ST Elevation in Contiguous Leads	Amount of ST Elevation
Anterior	LAD, diagonal, proximal marginal	Two leads of V1-4	2 mm
Apical Inferior	PDA Origin: RCA 90%, LCx 10%	Two of: II, III, aVF	2 mm 1 mm
Lateral High lateral	LCx LCx, distal RCA	V ₅₋₆ I, aVL	2 mm 2 mm
Posterior	RCA or LCx	ST depression in V ₁ , V ₂	2 mm
Right ventricular	Acute marginal branch of RCA	V₄R	1 mm

Anatomy of myocardial infarction

Infarction area	ECG leads involved	Coronary artery	Branch
Extensive anterior	I, AVL, V ₁ -V ₆	Left, LM	LAD, LCX
Anteroseptal	$V_1 - V_3$	Left	LAD
Anterolateral	I, AVL, V ₄ -V ₆	Left	LCX
Inferior	II, III, AVF	Right 80%* Left 20%	PDA
True posterior	V ₁ -V ₂ (reciprocal)	Variable: Left Right	LCX PL

Abbreviations: LAD = Left anterior descending artery, LCX = Left circumflex artery; LM = Left main artery; PDA = Posterior descending artery; PL = Posterolateral branches. *Refers to percentage of patients.

TABLE 7-3. ACUTE TRANSMURAL MI LOCALIZATION.

Territory	ECG Lead	ECG Criteria ¹	
Anterior	V ₂ V3	Any Q, or $R \le 1$ mm and > 10 ms, or R in $V_2 \ge R$ in V_1 Any Q, or $R \le 2$ mm and > 20 ms	
Apical	V ₅ V ₆	$Q \ge 30 \text{ ms or } Q \ge \frac{1}{2} \text{ R height}$ $Q \ge 30 \text{ ms or } Q \ge \frac{1}{3} \text{ R height}$	
High lateral	I, aVL	Either I or aVL: $Q \ge ms$	
Inferior	II, III, aVF	If or aVF: $Q \ge 30$ ms III: Q depth > $\frac{1}{3}$ R height	
Posterior	V ₁ V ₂	$R \ge 40 \text{ ms or} \ge 6 \text{ mm}$ $R \ge 50 \text{ ms or} \ge 15 \text{ mm}$	

¹In the absence of LVH, LAFB, LBBB, RBBB, RVH, COPD, W-P-W, the criteria listed are ≥ 93% specific.

Cardiac Enzyme & EKG

RELATIONSHIP OF ECG TO CARDIAC ENZYMES

Rhythm Abnormality in MI

- VT/Vf
- PAF
- AIVT
- AV block
- Sinus bradicardia (Bezold-Jarisch Reflex)
- Sinus tacycardia

EKG Evolution of AMI

Ant. Wall MI with Hyperacute T Wave

Inferior Wall AMI with RV infarction

Post.inferior wall MI

Myoischemia – AMI & LBBB

EKG criteria for AMI in presence of LBBB :

Criterion	Score
ST segment elevation > 1 mm concordant with QRS	5
ST segment depression > 1 mm in lead V1, V2 or V3	3
ST segment elevation > 5 mm discordant with QRS	2

Score > 3 => specificity > 90% and 88% positive predict value

NEJM 1996;334:481-487

Septal Infarct with LBBB

Inf. Wall AMI & CLBBB

Myoischemia – AMI & RBBB

 Pseudonormalization of original inverted T wave in V1-V4 lead

Ant. Wall MI & CRBBB

Myoischemia - - Pseudo-normalization

Psuedoinfarction

COPD

- •Pointed tall T in Lead II => RAE
- •RAD
- •CWR
- •PRWP at V1-V5 => mimic anteroseptal MI
- •Psudo-ST depression at V6 => atrial repolarization

THANK YOU!

